sábado, 13 de octubre de 2012

Operaciones con Límites de una función


En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.
Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:
 \lim_{x\to c} \, \, f(x) = L
si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.
Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:
"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que ε unidades".

Esta definición, se puede escribir utilizando términos lógico-matemáticos y de manera compacta:

   \begin{array}{l}
      \underset {x\to c}{\lim} \, \, f(x) = L \iff  \forall \varepsilon > 0 \ \ \exists \ \delta > 0 : 0<|x-c|<\delta \longrightarrow |f(x)-L|<\varepsilon
   \end{array}

No hay comentarios:

Publicar un comentario